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Abstract--The problem of mass transfer from a solid sphere to a viscoelastic fluid has been examined 
theoretically. It is shown that fluid elasticity increases marginally the mass transfer rate in the creeping flow 
regime. This will have serious implications on the mass transfer from bubbles if impuritie~ are present. 
Some conclusions on mass transfer at high Reynolds numbers are also offered. 

INTRODUCTION 

Mass transport phenomena in non-Newtonian fluids are of great importance. There are many 
instances, where mass transport occurs in a non-Newtonian fluid in a two phase dispersion 
(Astarita & Mashelkar, 1977). The common examples are sewage treatment processes, fer- 
mentation processes (e.g. antibiotic production), polymer processing (e.g. vacuum devolatiliza- 
tion of molten polymers) and polymer production (e.g. finishing stages of some polyes- 
terification reactions). In many instances, bubbles and drops acquire surface rigidity due to the 
accumulation of surface active agents, which impede the interfacial motion. It thus becomes 
important to examine the mass transport rate in particle systems with rigid interfaces. 

Expressions for the mass transfer rate from a bubble moving in a viscoelastic liquid were 
obtained by Moo-Young & Hirose [1972] and Tiefenbruck & Leal [1980] and the effect of fluid 
elasticity on the mass transfer rate from a drop was discussed by Shirotsuka & Kawase [1974]. 
However, mass transfer in a viscoelastic liquid from a fluid sphere, the surface of which has 
been immobilized by surface active agents, has not been analyzed so far. 

In this communication, we shall consider the influence of the elasticity of the fluid on mass 
transfer characteristics from a solid sphere. 

CREEPING FLOW REGION 

Since the mass transport in non-Newtonian fluids occurs in the region of high Peclet 
number, we may use the general short range diffusion equations developed by Baird & 
Hamielec (1962) and by Lochiel & Calderbank (1964). 

The thin concentration boundary layer approximation leads to 

'~ u~ . s in  0 d0} 2/3. Sh/Pe'/3 = O'641{f0 (U  sin0)'/2 [11 

where u~ is the gradient of the tangential velocity component at the surface Sh is the Sherwood 
number (2akdD), Pe is the Peclet number (2aU/D), D is the diffusivity, k, is the mass transfer 
coefficient, U is the velocity of the uniform stream, 0 is the spherical coordinate, a is the radius of 
solid sphere. If the expression for u~is known, then [I] can be integrated to obtain the mass transfer 
coefficient for a solid sphere moving in viscoelastic fluids at high Peclet numbers. 
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The starting point of our analysis is the stream functions obtained by Leslie (1961) for the 
creeping flow of viscoelastic fluid around a solid sphere. To portray the viscoelastic behavior of 
the ambient liquid, we have chosen the 3-parameter Oldroyd equation 

r + h ~ = ~ o  E + h 2  [21 

where E is the rate of deformation tensor, ~ is the stress tensor, hi and ~2 are relaxation and 
retardation times, and 77o is the viscosity at zero shear. The operator, 8]Bt, signifies the convected 
derivative of a contravariant tensor. The stream function for a 3-constant Oldroyd fluid is given in 
the appendix. At small distances from the surface of the sphere (y' = ~ -  1, y' ~ 1), the stream 
function reduces to 

t~* = _3y,2 sin 2 0 - De 2 y'2{(0.009619 sin 4 0 

-0.009788 sin 2 0)(1 - e) 2 + 0.01114 sin 2 0E(1 - e) 

+ (-0.1243 sin n 0 + 0.1190 sin2 0)(1 - ~)}, [3] 

where De is the Deborah number (hi U/a), E is a dimensionless time parameter (&/&), and y' is a 
dimensionless radial distance [ ( r -  a)/a], with r being the radial distance from the solid sphere 
center, so that the dimensionless tangential velocity component, uo, is then given by 

(L~_~) 1 0 5 ' _  3y, sin O 
uo= = sin0 ay' 

+ 2y' De2{(0.009619 sin 3 0 - 0.009788 sin 0)(1 - e) 2 

+ 0.01114 sin 0E(I - e) + ( - 0.1243 sin 3 0 + 0.1190 sin 0)(1 - e)}. [4] 

The gradient at the surface of the tangential velocity component, u~, obtained from [4] can now 

be substituted into [1] to obtain 

Sh/Pe 1/3 = 0.641 [1 + 4De2{(0.009619 sin 2 0 

- 0.009788)(1 - E) 2 + 0.01114 ~(1 - e) + (-0.1243 sin 2 0 

2/3 

+ 0.1190)(1 - e)}1/2](~) 1/2 sin 2 0 dO . [5] 

When the second term in this integral is much smaller than one, the Sherwood number can be 

approximated by 

Sh/pel/3 = 0.734{2 + De2(0.0243 - 0.0099 ~ - 0.0144~2) } 2n [6] 

where the Deborah number De and the time parameter E are the two dimensionless measures of 
the liquid's viscoelasticity. Equation [6] predicts that, in the creeping flow regime, the mass 
transfer rate will increase with increasing relaxation time but the extent of this enhancement is 

so small that it is unlikely to have any significant effect. 
In order to assess the predictive value of [6], we will compare its predictions with those 

derived from the analysis of Moo-Young & Hirose (1972) and those derived by Tiefenbruck & 
Leal (1980). It will be remembered that both these analyses apply to gas bubbles, i.e. to spheres 

with mobile interface. 
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Figure 1. Effect of elasticity of fluids on mass transfer from a solid sphere. Ym = mass transfer correction 
factor, Yo = drag correction factor. 
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The rheological equation chosen by Tiefenbruck & Leal (1980) to interpret the viscoelastic 
behavior of the ambient liquid was the 4-constant Oldroyd equation. Using this, they arrived at 
a mass transfer expression 

Sh/Pe,/2= 0.6511+ De2(1 _ e)[~+.~.~+.f13 3a or2(1- e ) 2 i  a ( 1 -  e)3572(~21"11/2175 JJ  (7) 

where the meaning of the Deborah number De and of the parameter ~ is the same as given in 
the appendix. When the third parameter, a, a material constant in the 4-constant Oldroyd model 
becomes a = 1, then this is equivalent to a 4-constant Oldroyd equation reducing to a 3-constant 
equation, i.e. to [2]. 

Tiefenbruck & Leal (1980) found that the mass transfer rate may either increase or decrease 
relative to its value in a Newtonian fluid, depending upon the value of a as shown in figure 1. 
Although De was too large in the experiments of Zana & Leal (1978) for the analysis presented 
by Tiefenbruck & Leal (1980) to apply, their data suggested that the mass transfer rate is 
enhanced in a viscoelastic fluid. The Tiefenbruck & Leal (1980) analysis predicts, as shown in 
figure 1, that for the case of a = 1 a viscoelastic correction factor for mass transfer (YM) 
decreases with the increase of the Deborah number, which is opposite to the results of our 
analysis, also shown in figure 1. Only when a = 0.8, Tiefenbruck's and Leal's analysis yields 
results close to ours. 

Another discrepancy comes to light also in the region of fluid drag. According to Tiefen- 
bruck & Leal (1980), for the case of a = 1, the viscoelasticity tends to increase the drag 
coefficient, whilst the opposite is predicted by our analysis. This discrepancy is shown 
graphically in figure 1 by the dotted line. The only experimental evidence of the influence of 
viscoelasticity, that we know of, is the work of Chhabra et al. (1980). They found that, under 
the creeping flow conditions, the drag on a sphere in a viscoelastic fluid is reduced as compared 
with the drag in a Newtonian liquid. We are not aware of any experimental work on mass 
transfer from rigid spheres moving slowly in viscoelastic liquids. 

To complete the comparison, we have also plotted the results of Moo-Young & Hirose's 
analysis (1972) for the creeping flow past a bubble. They, too, predicted an enhancement of the 
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mass transfer coefficient and they found experimental confirmation (1970) in dissolving bubbles 
of ethylene in aqueous solutions of CMC and HEC. 

The optimistic predictions of viscoelasticity enhancing the mass transfer under creeping 
flow conditions might not be, however, entirely justified under all circumstances. Marrucci et al. 

(1970) showed the surfactant impurities, which are always present in polymer solutions, tend to 
accumulate at the interface and thus provide a surface rigidity. Such a fluid sphere will then 
have its surface immobilized and thus move through the liquid as a rigid body. As a 
consequence of that, any enhancement of mass transfer is likely to be negligible. 

In this context, we may also briefly mention that, at the threshold of the transition, the 
power of the Schmidt number changes from 1/2 to 1/3. The same is, however, true for a 
Newtonian inelastic liquid. 

HIGH REYNOLDS NUMBER REGION 

Unfortunately, no convective fields have been published in the literature concerning the flow 
past a solid sphere in the high Reynolds number range. However, the photographic evidence 
presented by Acharya et al. (1976) suggests that there are dramatic differences in the wake 
region of an inelastic and a viscoelastic fluid in this range. They experimentally found delayed 
separation and the phenomenon of dual wake formation in viscoelastic fluids. Verma (1977) 
theoretically showed that the increase in the elasticity of the liquid causes a shift in the point of 
separation towards the forward stagnation point. While considering multiparticle systems, the 
differences in the wake regions can be of great importance. Thus, if a two-particle system is 
considered, then it can be clearly seen that the wake region of a given sphere mixes the fluid 
and provides fresh fluid with a uniform composition to the subsequent sphere following in the 
wake. It appears that this mixing mechanism may be eliminated in elastic fluids and this may 
have a sizable influence on mass transfer properties of dispersions of viscoelastic liquids. 

CONCLUSIONS 

It is shown that increased elasticity of fluids enhances to some extent the mass transfer from 
a solid sphere under the creeping flow conditions but it does so to a lesser extent as compared 
with a sphere with a mobile interface (bubbles and drops). It should be noted that this influence 
is opposite so that on the drag coefficient. Both Moo-Young & Hirose (1972) as well as 
Tiefenbruck & Leal (1980) (at least for a -> 0.8) predict that the elasticity increases the mass 
transfer coefficient from bubbles which move very slowly in a viscoelastic solution. These 
predictions may be too optimistic if surface active impurities are present which render the 
surface of the bubble immobile. All of the three analyses discussed in this work are limited to a 
case where the elastic contribution of the fluids is small. Theoretical understanding of this 
problem for strong elasticity must await further investigation. 

Finally, we have also drawn some conclusions on mass transfer in the high Reynolds region. 

NOMENCLATURE 

a Radius of solid sphere 
De Deborah number, De = A~ U/a 
D diffusivity 
E rate of deformation tensor 

Fo drag force 
k,. mass transfer coefficient 

Pe Peclet number (= 2a U/D) 
r radial distance from the solid sphere center 

Sh Sherwood number (=  k,.2a/D) 
t time 
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U velocity of uniform stream 
u~ gradient at the surface of the tangential velocity component 
Yt~ drag correction factor ( = (FD)/(FO)Newtom~) 
YM mass transfer correction factor (=(Sh/pell3)/(ShlPell3)Ncwtoni, 

(Sh/pel/2)N,wtomn) 

( raa ) y' dimensionless radial distance = 

Greek symbols 
a material constant in 4-constant Oldroyd model 
e dimensionless time parameter (= A2/AI) 
0 spherical coordinate 

To viscosity at zero shear 
hi relaxation time 
A2 retardation time 

dimensionless radial distance (= r/a) 
T stress tensor 

stream function 
~* dimensionless stream function (= ql/a 2 U) 

o r  (Sh/Pe1/2)/ 
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A P P E N D I X  

The dimensionless stream function obtained by Leslie (1961) 

Oldroyd fluid. 

~ ,  = ~(~2 _ 3~ + ~C~)sin2 0 + 3De(1 - e)s in  2 0 cos 0(1 - C~) 3 

+ De2[~(1 _ e)2 {sin 4 0(0.0629 ~-~ - 0.4583 ~j-2 + 0.7655 ~-3 

+0.2143 ~-31n ~-0 .6667 ~-4+0.2980 ~-5+0.0417 ~-6-0.0431 ~:-7) 

+ sin 2 0(0.0006 ~ - 0.0374 ~-l + 0.3333 ~-2_ 0.1714 ~-3 In 

- 0.6181 ~-3 + 0.5833 ~-4 _ 0.2352 ~-5 _ 0.0833 ~-6 + 0.0567 ~j-7)} 

+~e(1  - E){sin 4 0(0.2704 ~-1_ 1.1250 ~-2+ 2.1511 ~-3 

- 0.2143 ~-3 In ~ - 1.8333 ~-4 + 0.5354 ~-5 + 0.0417 ~-6 _ 0.0402 ~-7) 

+ sin 2 0( - 0.0006 ~ - 0.1849 ~-1 + 0.0833 s r-2 + 0.1714 s c-3 In 

- 1.7152 ~-3+ 1.5278 0 - 4 -  0.4315 ~ 5_ 0.833 ~-6+ 0.0544 ~-7)} 

+9(1 - e){sin 4 0(0.1515 ~-~-0.9375 ~-2 + 0.3733 ~ 3 

+ 0.9643 ~-3 In ~ + 0.5000 ~-4 _ 0.0758 ~-5 _ 0.0208 ~ 6 + 0.0061 ~-7 

+ 0.0032 ~-9) + sin z 0(0.0044 ~ - O. 1363 ~-1 + 0.7500 ~-2 

- 0.7714 ~-3 in ~ - 0.2815 ~-3 _ 0.3750 ~-4 + 0.0011 ~-5 
+ 0.0417 C 6 + 0.0012 C 7 - 0.0055 C9)}] 

reduced to a 3-constant 

[A1] 

where De = UA~/a and ~ = A2/A~. 


